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Abstract 

 

THE EFFECT OF THREE-DAY ANKLE IMMOBILIZATION ON JOINT MOTION 

AND NEURAL EXCITABILITY 

 

Jasmine Cash 

B.A., University of North Carolina at Chapel Hill 

M.S., Appalachian State University 

 

Chairperson: Alan Needle Ph.D., ATC 

The effects of orthopedic injuries include changes to the nervous system, which lead to 

alterations in muscle function, biomechanics, and performance, possibly predisposing individuals 

to further injury. Ankle injuries are the most common injury among the physically active, with 

immobilization being a standard rehabilitation method. Boot immobilizers (BI) are commonly 

used following injuries, however, little is known about the effects of prolonged BI use on 

corticospinal and reflexive excitability, and on gait kinematics. A crossover design was 

implemented using twelve uninjured individuals (age: 20.8±1.4 yrs, H: 1.7±0.1 m, M: 75.2±9.9 

kg). Participants were asked to wear one of two treatments – BI with a compression sock (CS) or 

just a CS – for three days, with at least a 7-day washout between conditions. Reflexive 

excitability was assessed using the Hoffmann reflex. Corticospinal excitability was measured 

using transcranial magnetic stimulation over the primary motor cortex. All neural measures were 

assessed for the tibialis anterior (TA), peroneus longus (PL), and soleus (SOL). Lower extremity 

3-D joint angles were assessed using a Vicon motion capture system (Oxford UK), while 

participants walked on a split-belt treadmill. Differences between testing times were assessed 

using a repeated-measures analysis of variance. Changes in continuous joint angles were 

assessed using statistical parametric mapping (SPM). Reflexive excitability changes, as 

evidenced by the ratio of the maximum H-wave and maximum M-wave, were observed 

(F3,33=4.026;  p=0.015, η2=0.268), with significant decreases pre- to post-BI (p=0.003). For 



 v 

corticospinal excitability, similar changes were observed in resting motor threshold (F6,36=4.351; 

p=0.002, η2=0.42), also with decreases pre- to post-BI (p=0.046). No changes occurred in motor 

evoked potential size (F6,36=0.702; p=0.65) or cortical silent period (F6,42=0.631; p=0.704). 

Significant changes were observed at the knee and hip in the frontal and transverse planes, pre- 

to post-BI (p<0.05). SPM analysis revealed significant main effects of time in knee frontal and 

transverse angles during stance (p<0.05), and knee sagittal and transverse angles (p<0.05), as 

well as changes in hip transverse angles (p<0.05) during swing. Our results indicate that the BI 

increased corticospinal excitability and decreased reflexive excitability. In the context of injury, 

the former could be beneficial and the later, potentially problematic. Our results also indicated 

altered proximal joint (hip and knee) mechanics, however, the long term effects of these changes 

remains unclear. We postulate these data demonstrate the effects of a BI on neural excitability 

and lower extremity kinematics among healthy individuals, but future studies are needed to 

determine effects in injured populations. 
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Chapter 1: Introduction 

 

Orthopedic injuries generate alterations within the central and peripheral nervous systems 

(neuroplasticity) that effectively alter motor output, placing these individuals at increased risk of 

injury (Needle et al., 2017a). Previous studies have observed changes in motor output following 

upper (Bachasson et al., 2015) and lower extremity injuries (Kim et al., 2019; Needle et al., 

2017a; Pietrosimone et al. 2012; Sefton et al., 2008), likely due to alterations in sensory 

feedback. Damage to capsuloligamentous mechanoreceptors, and its subsequent effect on muscle 

spindle & fusimotor function, as well as an increase in nociception contributes to sensory influx 

that negatively affects proprioception and subsequently can alter muscle function (Courtney et 

al., 2010). These adaptations are seen at the segmental level as evidenced by changes in reflexive 

excitability and within the brain and corticospinal tracts (Lepley et al., 2014; Lepley et al., 2015; 

McLeod et al., 2015; Sefton et al., 2008). Given the multiple levels at which adaptations can 

occur (e.g. joints, spinal cord, motor units, etc.), interventions capable of preventing or changing 

this response should be investigated.  

Ankle injuries are the most commonly reported injury in athletic settings, making it 

imperative that research is dedicated to its treatment and prevention. Within these populations, 

15% of all injuries reported were ankle injuries (Hootman et al., 2007), with 73% of athletes 

being subject to recurrent ankle sprains (Herzog et al., 2019). Chronic ankle instability (CAI), or 

the recurrent giving way of the ankle joint, can develop after acute ankle sprains in as many as 

70% of those affected (Gribble et al., 2016). These negative outcomes appear to be related to 

neural adaptation and can occur independently of changes to the laxity or stiffness of the ankle 

(Needle et al., 2017b). Along with these physical changes, CAI has been shown to affect quality 

of life. Studies have shown individuals to have an increased fear of reinjury (Houston et al., 
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2014) as well as higher body mass indexes, related to overall less physical activity (Hiller et al., 

2011). Within the general population, 25% of all musculoskeletal injuries presented to primary 

care providers are ankle sprains (Czajka et al., 2014) and can come with considerable financial 

implications (Shah et al., 2016). Unfortunately, current interventions have generally been 

ineffective in curbing such consequences (Donovan & Hertel, 2012). In settings where ankle 

sprains are treated conservatively with immobilization (i.e. emergency room), patients are 

observed to have better long-term outcomes then those that report to rehabilitation medicine 

settings (Mailuhu et al., 2020). 

 Immobilization of the ankle joint is a common method of treatment following injury, as it 

limits range of motion while allowing the injury to heal and symptoms (e.g. pain & swelling) to 

subside. Traditionally, casting has been the primary means of immobilization performed in 

clinical settings, providing significantly more resistance to motion than other bracing options 

(Lin et al., 2012; Raikin et al., 2001). Currently, recommendations are to limit immobilization 

after ankle sprains. The 2013 National Athletic Trainers’ Association position statement 

suggested minimizing immobilization in less severe injuries (Kaminski et al., 2013). Because of 

this, and increased patient satisfaction, dynamic immobilization techniques have become more 

common due to potentially better motor outcomes, such as less atrophy of the musculature 

surrounding the ankle joint (Kerkoffs et al., 2002). Analysis of biomechanical measures 

following prolonged cast immobilization has shown significant decreases in connective tissue 

remodeling (Reynolds et al., 1996), leading clinicians to err towards functional treatment models 

(Kaminski et al, 2013) and short-term immobilization (Kerkhoffs et al., 2001). Despite this, more 

contemporary research has shown potentially better long-term outcomes after casting when 

compared to alternate options (Lamb et al., 2009). Nonetheless, the advantage of dynamic 
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immobilization devices, such as walking boot immobilizers, is the allowance of attenuated 

weight bearing, allowing for some joint loading while still protecting the injured site. However, 

the treatment itself has not been studied extensively, particularly its effects on the nervous 

system and on biomechanics, and how those effects manifest themselves functionally. It is 

understood that ankle immobilization leads to positive rehabilitative outcomes, however, some 

disagreement still exists about which method is best. 

Past studies on the neural effects of immobilization outside of injury models, have 

explored changes in the corticospinal tract’s ability to activate muscle through, or corticospinal 

excitability, and through its ability to respond via the spinal cord’s regulation of motor responses, 

or its reflexive excitability (Leukel et al., 2015; Lundbye-Jensen & Nielson 2008a; Lundbye-

Jensen & Nielson 2008b; Roberts et al., 2007). Synapses retain a level of plasticity in an effort to 

best accommodate new information, or for these purposes, an immobilization device (Huber et 

al., 2006). Immobilization has been shown to affect sensory input, leading to an increase in 

corticospinal excitability due to gamma-aminobutyric acid (GABA)-mediated disinhibition 

(Leukel et al., 2015; Roberts et al. 2007). However, changes in reflexive excitability after 

immobilization have yielded inconclusive results, showing increases (Lundbye-Jensen & Nielson 

2008a; Lundbye-Jensen & Nielson 2008b), no changes (Leukel et al., 2015), or those measures 

weren’t considered (Roberts et al., 2007). The unloading effect of immobilization is associated 

with alterations in muscle spindle sensitivity, due to structural and histochemical changes 

(Kameda 1993, Józsa et al. 1990), as well as a decrease in presynaptic inhibition (Lundbye-

Jensen & Nielsen, 2008a), leading to observed increases in Hoffmann reflex (H-reflex) 

amplitudes. These studies have primarily observed changes with the use of traditional casting 

and in the upper extremities. Very few studies have explored how the nervous system adapts 



 4 

following a period of using a dynamic immobilization device, however, one study, involving a 

boot immobilizer (BI) (Stirling et al., 2018) found no change in central or peripheral excitability 

following 30-minutes of ambulation in dynamic immobilizers. Understanding the neural effects 

of acute immobilization is necessary, given its increased usage in treatment (Kerkhoffs et al., 

2001). The nervous system has been shown to interact with the changing environment, thus 

changing biomechanical parameters (Chiel et al., 2009). However, few studies have focused on 

what those changes entail, particularly kinematic changes. 

In addition to neural adaptation, immobilization devices place new biomechanical 

constraints on their wearers. As individuals face movement constraints imposed by 

immobilization devices (Jayaram et al., 2011), disinhibition within the primary motor cortex will 

modify inter-joint coordination (Cirstea et al., 2003) and negatively affect movement during 

daily tasks. These changes cause rewiring of the nervous system while wearers were using the 

device that may persist following removal of the modality. Lapses in coordination could present 

itself with changes in range of motion (ROM) that could ultimately affect performance. Wearing 

a BI creates a leg-length discrepancy (LLD), in which individuals must accommodate for a 

“longer limb.” Studies observing kinematic differences have found conflicting results: no 

changes (Pollo et al., 1999), changes in the ankle, knee, and hip (Zhang et al., 2006), and 

changes in the knees and hips (Gulgin et al., 2018). The more contemporary studies, though, 

have both shown changes in the proximal joints’ (knee and hip) ROM, hypothesized to be due to 

an increased effort to clear the “longer limb” during swing and fully allow the limb to accept an 

individual’s load during stance. Additionally, due to the mechanical constraints of a BI, a 

reduction in ankle ROM would be expected, as was the case in Zhang et al. (2006). All of these 
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studies were done while wearing a BI, so analyzing such lower extremity kinematics after BI use 

could be beneficial in understanding what movement strategies can persist.  

Acute ankle immobilization may serve as a way to better understand neuroplastic changes 

and its functional outcomes such that injury rehabilitation may be improved. No studies have 

concurrently measured neural & biomechanical adaptations following boot immobilization. 

Those looking at kinematics have only done so after immediate application. The proposed 

findings could aid in determining what joint mechanisms may predispose individuals to other 

musculoskeletal injuries, throughout the gait cycle. Using a healthy population is necessary to 

ensure that observed results were not due to nervous system changes associated with ankle 

injuries. In addition to the use of a BI, a sham immobilizer, or a compression sock (CS), would 

insure that observed changes were due to the use of a BI and not solely a change in cutaneous 

input. To minimize long-term disruption, an acute immobilization of 72 hours may be sufficient 

to generate transient changes in neural activity, given the altered sensory input provided by the 

BI, among these healthy individuals (McKay et al., 2002). 

Specific Aim 1: 

To determine the effects of 72 hours of immobilization on reflexive and corticospinal excitability 

to the lower leg muscles. 

• Hypothesis 1.1: Reflexive excitability will increase after 72 hours of ankle 

immobilization. There will be an increase in reflexive excitability, seen after removal of 

the BI, when compared to the CS. This will be evidenced by an increase in the maximal 

H-wave (HMax) and maximal M-wave (MMax) ratio taken from Hoffmann reflex 

measurements. 
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• Hypothesis 1.2: Corticospinal excitability will increase after 72 hours of ankle 

immobilization. There will be an increase in corticospinal excitability, seen after removal 

of the BI, when compared to the CS represented by a decrease in resting motor threshold 

(RMT) and an increase in motor evoked potential (MEP) size. The cortical silent period 

(CSP) will decrease after the boot immobilizer intervention when compared to not 

wearing a brace. 

Specific Aim 2: 

To determine the effects of 72 hours of immobilization on unilateral hip, knee, and ankle joint 

kinematics. 

• Hypothesis 2.1: ROM will be altered throughout one gait cycle (heel strike to heel strike 

of the same leg). The greatest change in ROM will be seen after removal of the BI, when 

compared the sham, CS, as measured by motion analysis using Vicon-Vantage Motion 

Capture (Oxford, UK). There will be a decrease in ankle ROM, and increases in knee and 

hip ROM.  
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Chapter 2: Review of Literature 

 

Introduction 

The central nervous system has the ability to adapt to changes in afferent input or efferent 

demand through a variety of means, including myelination morphology, cell proliferation, and 

synaptic behavioral modifications, also known as neuroplasticity (Ives, 2019). In the context of 

orthopedic injury, neuroplastic changes contribute to altered movement strategies, depression of 

activation of the musculature surrounding the affected joint, and sensory organ sensitization 

differences.  

 Ankle injuries are among the most common musculoskeletal injuries in athletic and 

general populations, justifying the study of its treatment. Dynamic immobilization is an 

increasingly common means of treatment, however, the majority of immobilization studies 

conducted focus on casting models. More so, these studies yield inconclusive results about its 

effects on the central nervous system, as well as the functional and biomechanical outcomes 

associated with these neural changes. 

 

Injury and the Central Nervous System 

The central nervous system (CNS) has an intrinsic capacity throughout one’s lifespan to 

alter its functioning caused by signaling changes, in an effort to maintain some level of 

homeostasis (Ives, 2019). Orthopedic injuries in both the upper (Bachasson et al., 2015) and 

lower extremities typically present with microtrauma to sensory organs leading to altered 

proprioceptive feedback (Needle et al., 2017a; Pietrosimone et al., 2012). More specifically, 

tearing of the musculotendinous unit is associated with structural and functional alterations, as 

well as deformation to the muscle, skin, and surrounding structures that all relay information to 
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the somatosensory cortex. This is turn, hinders one’s ability to recognize the affected area in 

space (Bachasson et al., 2015).  Additionally, injuries resulting from ligamentous damage cause 

peripheral deafferentation, ultimately impacting joint proprioception, and decreasing the ability 

to stabilize the affected joint (Needle et al., 2017a).  

Volitional movement primarily occurs through two neural mechanisms: reflexive and 

corticospinal pathways. Altered sensory organ input, as well as the influence of noxious stimuli 

(due to pain, inflammation, etc.) sensitizes afferent structures in an effort to protect the injured 

area (Courtney et al., 2010). These changes partially explain altered motor function following 

injury, and studying reflexive pathways are necessary to bettering our understanding. These 

pathways are typically measured using stretch reflex and Hoffmann reflex (H-reflex) testing, to 

elicit responses indicative of their neural circuitry (H-reflex, M-wave, F-wave, HMax:MMax ratio, 

etc.) (Needle et al., 2017a).  

Studies imploring these methods following injury have found changes in reflexive 

excitability in the quadriceps following anterior cruciate ligament reconstruction (ACLR) 

(Lepley et al., 2014). In another study, subjects with chronic ankle instability (CAI) were 

assessed via paired reflex depression (PRD), which is associated with presynaptic inhibition. 

When compared to controls, the subjects were not able to successfully transition from a double-

legged stance to a single-legged stance, indicating presynaptic pathways were affected by their 

CAI. Subjects with CAI also presented with more recurrent inhibition, or increased motor neuron 

inhibition via Renshaw cells, which is an estimate of postsynaptic inhibition (Sefton et al., 2008). 

However, when HMax:MMax ratio was assessed, there was no significant differences between 

those with CAI and the control group. Conversely, a metanalysis composed of 17 studies was 
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recently conducted, demonstrating that HMax:MMax ratio is smaller in those with CAI compared to 

uninjured individuals (Kim et al., 2019).  

In cases where the musculature surrounding the joint is uninjured, decreased reflexive 

activation of said musculature is known as arthrogenic muscle inhibition (AMI). This weakened 

activation is due to a decrease in the neurons’ ability to respond to stimuli, or its neural 

excitability, that innervates the musculature. AMI is thought to be a protective mechanism to 

attenuate load placed on the injured joint, but has been seen to have a negative impact on re-

injury and muscle function (Hopkins & Ingersoll, 2000). Individuals are subject to recurrent 

injuries in the same joint because of these signaling and excitability changes, as well as increased 

laxity in the joint structure itself (Pietrosimone et al., 2012).  

In addition to reflexive excitability, measuring corticospinal tracts is necessary to have a 

complete picture about how the nervous system responds to injury. Changes to corticospinal 

tracts can be measured using Transcranial Magnetic Stimulation (TMS). A magnetic stimulus is 

applied over the motor cortex, stimulating the muscles of interest and effectively obtaining motor 

evoked potentials (MEP’s). MEP’s are reflective of the ability of the motor cortex to send 

impulses to descending motor tracts, or corticospinal excitability (Hallett, 2007).  

A full understanding of how corticospinal excitability can be affected after injury, 

however, is still being determined. Recent studies have found a decrease in excitability following 

musculoskeletal injury. Patients who underwent ACLR surgery did not present with changes to 

MEP size when compared to controls prior to their surgery. However, central activation (another 

measure of CNS involvement) of the quadriceps muscle decreased for the ACLR group, denoting 

a decrease in corticospinal drive (Lepley et al., 2015). In individuals with CAI, MEP amplitudes 

were found to be lesser than those who consisted of the control group (McLeod et al., 2015). 
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Resting motor threshold (RMT), a measure of the minimum stimulus required to illicit a motor 

response, was found to be increased bilaterally in CAI individuals, also suggesting decreased 

corticospinal excitability (Pietrosimone & Gribble, 2012).  

All of the presented studies are evidence that the nervous system changes in response to 

injury, however, to what extent and what means still remains to be seen. The CNS in particular \ 

has been shown to change in relation to the complexity of the task (Duclay et al., 2011), possibly 

indicating that there is no true general mechanism of change,  because the magnitude of sensory 

input may change from task to task.  

 

Ankle Injuries 

The most common orthopedic injury in athletic populations involve the ankle joint. In the 

National Collegiate Athletic Association alone, 15% of the injuries reported over a 16 year span 

and across 15 sports were ankle injuries (Hootman et al., 2007). Additionally it has been found 

that 73% of athletes of varying experience levels were subject to recurrent ankle sprains 

following an initial episode (Yeung et al., 1994). Frequent injuries combined with structural 

changes and ongoing symptoms such as pain, swelling, and crepitus lead to CAI (Hiller et al., 

2011). CAI can develop after acute ankle sprains in as many as 70% of those affected (Gribble et 

al., 2016), and 72% of those with CAI have also reported feelings of disablement because they 

could not perform sport at their desired level (Konradsen et al., 2002). In the general population, 

ankle sprains are one of the most common musculoskeletal injuries presented to primary care 

providers at 25% (Czajka et. al., 2014). Their prevalence also places a considerable strain on 

health care costs in the range of $914-$1008 per injury (Shah et al., 2016).  
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Because of the prevalence of ankle injuries, it is important to also understand the 

biomechanical mechanisms by which they occur. It has been shown, that ankle sprains can occur 

after a sudden increase in inversion and internal rotation, 130-180 ms after initial contact after a 

side stepping task (Kristianslund et al., 2011). Additionally, after a similar cutting motion, 

maximal displacement of the ankle was seen 150 ms after heel strike, with rapid plantar flexion 

(Gehring et al., 2013).  

Treatment for ankle sprains usually involve either cast immobilization, operative 

measures, functional treatment, or some combination of those methods. Upon conduction of a 

meta-analysis comparing the different methods, it was found that functional treatment yielded 

better results than immobilization via casting, and operative treatment provided better results that 

functional treatment after six weeks (Pijnenburg et al., 2000). In an analysis of 3 randomized 

trials, Mailuhu et al. (2020) found that individuals who obtain treatments in emergency 

department settings prior to neuromuscular training experience less recurrent ankle sprains than 

those whose initial care comes from therapy settings. This study suggested that one of the 

reasons for these improved outcomes could be the treatments used in emergency settings, i.e. 

immobilization and bracing techniques, pointing to their effectiveness. Given this data, clinical 

preference for different methods is a bit controversial, though, because it is impossible to 

accurately say in every case that one method is better than another.  

 

Immobilization  

Upon injury, immobilization of the ankle joint is a common method of treatment. It limits 

range of motion while alleviating symptoms such as pain and swelling, and allowing the injury to 

heal. There are a multitude of immobilization methods with major differences existing in range 
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of motion, differences in accessibility of the injured joint, hygiene, and ease of application of the 

device. Such devices include Plaster of Paris casts, pneumatic walkers, and stirrup braces 

(Raiken et al., 2001). 

Studies have found there to be statistically significant differences between functional 

treatment and immobilization, pointing to a more favorable outcome with short term 

immobilization coupled with functional treatment (Kerkoffs et al., 2001). A systematic review 

comparing rehabilitation methods found that removable immobilization devices compared to cast 

immobilization alone yielded increased ankle dorsiflexion ROM as well as an increased ability to 

perform activities of daily living (Lin et al., 2012). Similarly, clinical preference has recently 

been given to dynamic immobilization techniques due to additional factors such as more 

favorable patient satisfaction and better motor performance (Kerkoffs et al., 2002). Based on this 

evidence, the 2013 National Athletic Trainers’ Association Position Statement on treatment of 

ankle injuries states that functional treatment is preferable to immobilization (Kaminski et al., 

2013) 

Despite such preferences, there is evidence suggesting otherwise. A meta-analysis of 19 

studies demonstrated that the majority of ankle sprains, regardless of the grade (I, II, or III), do 

not require serious intervention (e.g. surgery).  However, a period of 10 days of immobilization 

has been shown to be sufficient in treatment of more serious ankle sprains (grade III) (Petersen et 

al., 2013). Likewise, upon assessment of the effectiveness of several braces when used after 

severe ankle sprains, a below-knee dynamic immobilizer resulted in faster recovery than in 

subjects only given tubular compression bandage, suggesting the efficacy of more stringent 

immobilization based on the type of sprain (Lamb et al., 2009).  
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CAI and even osteoarthritis can develop if adequate treatment is not provided. A 

prospective cohort study found that a full recovery of mechanical laxity following an ankle 

sprain takes longer than 8 weeks (Hubbard & Cordova, 2009). Despite a shift to dynamic 

immobilization and functional treatment, it may not always allow the ankle to fully heal and 

regain structural stability. According to a review, laxity still persisted after treatments, in the 

form of feelings of instability (7%-42%) and positive anterior drawer tests (3%-31%) (Hubbard 

& Wikstrom, 2010). 

Although boot immobilizers (BI), are replacing casting because of the aforementioned 

reasons, the choice of an such over a traditional cast has been seen as being anecdotal rather than 

based on evidence. In clinical settings, the choice of immobilization device should be assigned 

on an individualized basis (Raikin et al., 2001). Due to discrepancies of the research presented, 

gaining more of an understanding of how boot immobilizers can affect wearers is necessary to 

ensure its that its use in rehabilitation programs is warranted.  

 

Neural Effects of Immobilization 

Gait pattern adjustments before and after wearing immobilization devices can be seen as 

learning an unfamiliar task. It places new sensory and motor constraints on the body, thus 

affecting the central nervous system. Synapses can remodel themselves according to how new 

information has to be sent from neuron to neuron, based on adapting to the immobilized device 

(Huber et al., 2006). However, studies implementing such methodologies have yielded 

inconclusive results. It is important to note that the differences in effects of immobilization on 

the nervous system could be a result of differences in immobilization, timing, upper versus lower 

extremities, and neural measures used. 
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Researchers have used upper and lower extremity models to demonstrate neural 

excitability changes. In upper extremity models, changes in reflexive and corticospinal 

excitability have been observed after a week in an arm cast (Clark et al., 2008; Lundbye-Jensen 

& Nielson, 2008a). Lundbye-Jensen and Nielson (2008a) determined that H-reflex amplitudes 

increased, indicating an increase in reflexive excitability, however there were no changes in 

corticospinal excitability (as measured by MEP’s). It was suggested that due to these findings, as 

well as a reduction in corticomuscular coherence (CC), a measure of the synchrony between the 

cortex and the muscles of interest, immobilization of the arm results in less communication 

between reflexive and cortical drives. Also, the restrictions of information to Ia afferents, were 

possibly caused by presynaptic inhibition or post activation depression. Unloading effects had 

before been shown to increase H-reflex gains, as well as inhibition of the corresponding stretch 

reflex (Anderson et al., 1999). Conversely, Clark et al. (2008) found that MEP values increased 

after only a week of forearm immobilization, and remained elevated through the 3 week protocol 

implemented in that study, as well as 1 week following cast removal. When an immobilization 

method that allowed for some afferent input (a splint) was used RMT decreased but only in one 

muscle, suggesting an increase corticospinal excitability (Zannette et al., 2004). Another major 

difference between this study and the previous two, is that this protocol called for participants to 

be immobilization for 30-45 days (Table 1). 

Measuring neural function in the lower extremities have similarly yielded ambiguous 

results. In a separate study done by Lundbye-Jensen and Nielsen (2008b), reflexive excitability 

was found to increase. The researchers posited that the disuse caused plastic changes to the 

spinal interneurons, thus resulting in an increased H-reflex amplitude. These alterations are 

possibly due to muscle spindle sensitization, as well as increased stiffness of intrafusal fibers that 
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can affect factors such as myelin sheath degeneration of the corresponding neurons, structural 

changes, and collagen network morphology (Józsa et al. 1990; Kameda, 1993).  

Other studies have shown there to be increases in corticospinal excitability after 10 days 

to 8 weeks of joint immobilization, (Leukel et al., 2015; Roberts et al. 2007), with these 

measures returning to pretest values upon reevaluation. In one of the first studies exploring 

neuroplastic changes following immobilization in a healthy population, MEP amplitudes 

increased 24 hours after the removal of a full leg cast (Roberts et al., 2007). After 48 hours, 

though, MEP amplitudes returned to normal. This could possibly aid in determining the timing of 

injuries after removal of a cast, as similar decreases in MEP’s (McLeod et al., 2015), have been 

observed. Interestingly, Leukel et al. (2015) used a conditioned H-reflex method to determine 

pathway specific changes in corticospinal excitability, as traditional MEP measures are 

indicative of a summation of neural activity to the muscle of interest. The study showed that after 

8 weeks of ankle immobilization, slower, less direct corticospinal tracts were altered. This 

suggests that while excitability changes are present, they may be pathway specific. However, in 

these two studies there were no reported changes in reflexive excitability, as measured by the 

stretch and H-reflex (Leukel et al., 2015), or no measures taken (Roberts et al., 2007) (Table 2).  

The aforementioned studies explore effects after extended periods of unloading, and 

primarily in casts. with few inquiries having explored short term immobilization. However, in 

one study, comparisons were made using a boot immobilizer and a pneumatic leg splint, and 

compared them to a control treatment of no device. In immobilizing the ankles of individuals for 

30 minutes, there were no significant changes in the nervous system’s ability to call upon its 

resources. Neural excitability has been shown to change as peripheral stimuli changes after about 

45 minutes (McKay et al., 2002). Stirling et al. (2018) came to the conclusion that nervous 
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system changes can be attributed to long term immobilization. Because of its prevalence in 

treatment (Kerkhoffs et al., 2001), continued short term immobilization research (exceeding 45 

minutes) is necessary to better understand its effects.  

Table 1 

Upper extremity immobilization studies observing neural excitability 

Authors Joint(s) 

Immobilized 

Length of 

Time 

Condition Neural 

Measures 

Findings 

C
la

rk
 e

t 
al

.,
 2

0
0
8

 Forearm & 

wrist 

3 weeks Cast H-reflex 

measures, 

MEP, CSP, 

Central 

activation 

Changes in nervous 

system can be seen 

after 1 week of 

immobilization 

L
u
n
d
b
y
e-

Je
n
se

n
 

&
 N

ie
ls

en
, 
2
0
0
8

a
 Forearm & 

wrist 

1 week Cast H-reflex 

measures, 

MEP, CC 

Reduction of Ia 

afferents caused by 

presynaptic inhibition 

or postactivation 

depression; altered 

afferent input  

 

Z
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n
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.,
 

2
0
0
4
 

Wrist 30-45 days Splint RMT, MEP Decreased RMT in 

single muscle 
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Table 2 

Lower extremity immobilization studies observing neural excitability 

 

Authors Joint(s) 

Immobilized 

Length of 

Time 

Condition Neural 

Measures 

Findings 

L
eu

k
el

 e
t 

a
l.

, 

2
0
1
5

 

Ankle 8 weeks Cast H-reflex 

measures, 

MEP 

Slower, indirect 

corticospinal tracts 

affected increased; no 

change in reflexive 

measures 

R
o
b
er

ts
 e

t 
a
l.

, 

2
0
0
7
 

Knee & 

ankle 

10 days Cast MEP Excitability peaks 24 

hours after cast 

removal 

L
u
n
d
b
y
e-

Je
n
se

n
 

&
 N

ie
ls

en
, 
2
0
0
8

b
 Foot & ankle 2 weeks Cast H-reflex Disuse causes plastic 

changes in spinal 

interneurons 

S
ti

rl
in

g
 e

t 
al

.,
 

2
0
1
8
 

Ankle 30 

minutes 

Boot 

immobilizer, 

pneumatic 

leg splint 

H-reflex, 

MEP, CSP 

Excitability changes 

in dynamic 

immobilization 

devices caused by 

long term wearing 

 

 

Neural Effects on Biomechanics 

As it relates to brain activity, when individuals were tasked to learn a new locomotor 

pattern, an increase in excitability in the motor cortex (M1) was observed (Jayaram et al., 2011). 

For the purposes of this experiment, learning to walk without a dynamic immobilizer can be seen 

as learning a new locomotor pattern. The changes in balance that may occur could be due to 
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changes in proprioceptive feedback from ankle receptors and muscle spindles in the area (Horak 

& Nashner, 1986). Conversely, adaptations to a decrease in neural firing can affect interjoint 

coordination. Participants were assessed after a cerebrovascular accident, and asked to do a 

series of reaching tasks. Significant differences were observed in the middle of reaching, as well 

as at the end of the reach in the shoulder and elbow compared to healthy controls (Cirstea et al., 

2003). This could possibly be an effect of a decrease in firing in Purkinje cells, which normally 

secrete GABA, an inhibitory neurotransmitter. 

Significant relationships have also been determined between limb movements during a 

gait cycle, suggesting that the coordination of one limb effects that of another, particularly in the 

lower extremities (Svoboda et al., 2016). A concept known as the kinematic chain, this study 

found that inferior segments were correlated to the movement of superior segments and to 

adjacent segments (knee-hip, hip-pelvis) (Svoboda et al., 2016). Little is known about the 

biomechanical effects that the ipsilateral limb would have on the contralateral limb during and 

after use of a boot immobilizer.  

When used, boot immobilizers create differences in the limb length of the instrumented 

leg, known as a leg length discrepancy (LLD). LLD’s can alter whole body kinematics and 

kinematics during gait, regardless of the discrepancy (Azizan et al., 2018). It is important to note, 

though, that other factors such as pain and arthritis can also contribute to changes in gait in those 

with natural LLD (Azizan et al., 2018). There have only been three studies specifically observing 

LLD’s via a BI during gait. The first known study used 10 subjects and three-dimensional gait 

analysis to determine that there were no differences between a Bledsoe boot use, or walking with 

shoes on (Pollo et al., 1999).  
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In another study, Zhang et al. (2006) compared ground reaction forces (GRF) and three-

dimensional biomechanical characteristics between BI’s and sneakers. They found that there 

were no differences in vertical GRF between the two conditions, however, there was a decreased 

muscle activity at the knee and hip abductors via EMG in the walking boot conditions. Range of 

motion (ROM) only increased at the knee in the frontal plane, and ankle and hip ROM decreased 

in the sagittal plane (Zhang et al., 2006). In the only study observing bilateral difference, Gulgin 

et al. (2018) found there to be kinematic as well as kinetic changes in comparing three 

conditions: a BI and barefoot, a BI with sneakers, and bilateral tennis shoes. They confirmed that 

a boot immobilizer changes gait in the same manner that a LLD would; having to alter ROM in 

order to clear the elongated limb during swing, and having to extend farther in order to accept 

one’s load during stance. This resulted in significant differences in the hip and knee in the 

sagittal, frontal, and transverse planes. This would mean that walking boots usage results in 

proximal kinematic changes. 

All of these studies observed changes with a BI on, leaving room to understand what 

happens upon removal of a BI. Despite the lack of research in the biomechanical changes that 

occur with the use of a boot immobilizer, previous findings could aid in understanding how 

seemingly uninvolved changes to other segments could create changes to the entirety of the 

lower body, possibly predisposing individuals to injury, up or down the kinematic chain. 

 

Summary 

The prevalence of ankle injuries warrants the need to better understand current and 

evolving treatment methods. Although functional treatment (short term immobilization and 

physical therapy) has been seen as the preferred method of clinicians, its efficacy, particularly 
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after the use of dynamic immobilizers is still being researched. It still remains to be seen how the 

nervous system responds to dynamic immobilization devices, as the majority of studies that have 

been done have used casting treatments. Additionally, little is known about the neural effects of a 

short bout of dynamic immobilization, as it's typically prescribed.  

 Those neural changes could affect biomechanical measures during gait cycles while using 

a dynamic immobilization device, because the wearer is essentially learning a new motor pattern. 

They have to create new affordances to essentially an extension of their bodies, possibly 

including changes in joint angles and ground reaction forces. This could create new injuries, or, 

upon removal of the device, could predispose the individual to other injuries due to the body’s 

unfamiliarity with this new motor plan. Research is necessary to understand to what extent these 

neural and biomechanical changes could lead to possible injuries after the use of a dynamic 

immobilizer. 
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Chapter 3: Materials and Methods 

Experimental Design 

This study used a double crossover design with pretest and posttest measures. The 

independent variable of this study was the time of each treatment (Pre-BI, Post-BI, Pre-CS, Post-

CS), with the kinematic measures having one additional time point (Post-BI15). Dependent 

variables included reflexive excitability (HMax:MMax), cortical excitability (RMT, MEPMax, MEP 

size), cortical inhibition (CSP), and lower extremity kinematics, including peak joint angles at 

the ankle, knee, and hip during stance and swing, as well as continuous analyses. All participants 

received both BI and CS treatments. After posttest measurements for the first condition, subjects 

underwent a “washout” period of no less than 7 days to ensure minimize the potential of 

carryover effects from the previous condition. 

Measurements were taken directly before (pretest) and after (posttest) treatments (Figure 

1). After the posttest measurements, subjects underwent a “washout” period of 7 days to insure 

no contamination of results from previous treatments. Following the washout period, each 

subject was introduced to the other treatment, so that all participants experienced both 

treatments. 

Figure 1 

Study design 

 

Note: All subjects followed the above timeline, following placement into either the BI+CS or CS treatment. They 

completed the pretest, the treatment for 72 hours, a posttest and finally the washout period for 7 days. 

 

Pretest
Treatment  (BI+CS 

or CS)

(72 hours)

Postest "Washout" (7 days)

Second 
Treatment 
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Participants 

Twelve uninjured men and women (6M, 6W, aged 18-30) were recruited from 

Appalachian State University and the surrounding community in Boone, NC through class 

presentations and flyers. We did not anticipate any neural differences due to sex (Pitcher et al., 

2003). While we acknowledge walking biomechanical differences between sexes, we did not 

expect those differences to affect the response to immobilization. Inclusion criteria included 

uninjured men and women aged 18-30. Exclusion criteria included a history of lower limb long-

term (>1 week) immobilization, a history of repeated rolling or giving-way at the ankle joint, and 

a history of lower extremity surgery. Further exclusion criteria for safe practice of TMS included 

presence of epilepsy or history of seizure, immediate family members with epilepsy, recurrent 

syncope or fainting episodes, recent concussion (within 6 months), hearing problems or cochlear 

implants, pregnancy, implanted metal (including splinters, fragments, clips, etc.), pacemaker, 

neurostimulator, or other medical device, suffers from recurrent migraine headaches (recurrent= 

4 or more in a year), history of skull fracture or abnormalities, history of surgery to brain or 

heart, taking medications associated with risk of seizure, or history of previous problems during 

TMS or magnetic resonance imaging testing. The left leg was used in the instrumentation of CS 

and BI, and for neural excitability testing. Anthropometric measures including height and mass 

were recorded.  

Reflexive Excitability 

For all neural testing procedures (reflexive and corticospinal excitability) 

electromyography (EMG) electrodes were placed on the left tibialis anterior (TA), peroneus 

longus (PL), and the soleus (SOL). In order to prep the skin, the area was shaved (if necessary), 

cleaned with alcohol wipes, and abraded (Perotto & Delagi, 2005). Electrodes were connected to 
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an EMG analyzer (B&L Engineering, Santa Ana, CA), and connected to an analog-to-digital 

convertor (National Instruments, Austin, TX) to be sampled in custom LabVIEW software 

(National Instruments, Austin, TX) at 2000 Hz. 

To assess reflexive excitability, participants were asked to lie prone on a table. The H-

reflex was elicited by electrical stimulation to the popliteal fossa of the left leg using a bar 

electrode connected to a constant current stimulator (DS7R, Digitimer LTD, Hertfordshire, UK). 

The location of the sciatic nerve prior to its bifurcation into the common peroneal nerve and the 

sciatic nerve, was identified as the point in which contraction was observed in all 3 muscles at 

the lowest possible intensity (Hoffman et al., 2003). Once the location was identified, the 

maximum reflexive (H) wave and direct (M) responses were determined by applying 1 ms square 

pulses every 10 seconds. Starting at 0 mA the pulses increased by 2 mA until a maximal 

response (MMax) was seen in all three muscles (Hoffman et al., 2003). Peak-to-peak amplitudes 

of the H-wave (50-100ms after stimulus) and M-waves (10-40ms after stimulus) were plotted 

against stimulus intensities. Stimuli were triggered and synchronized with EMG data in custom 

LabVIEW software. The maximum H-wave (HMax) and MMax were extracted offline in separate 

LabVIEW software to create an HMax:MMax ratio that served as a dependent variable of interest. 

Reflexive measurements were taken first upon reporting for pre- and post-testing. During post-BI 

testing, upon completion of gait analysis procedures after 15-minutes of free ambulation (listed 

below), participants completed a second round of reflexive excitability testing to help assess 

duration of any potential changes.  
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Corticospinal Excitability 

Subjects were seated in an arm-chair with a lycra elastic cap placed on their heads. The 

vertex of the skull was identified by the subject and marked on the cap to serve as a reference 

point for TMS procedures. Cortical excitability was assessed using a single-pulse magnetic 

stimulator with a 2T maximal output connected to a double-cone coil (Magstim 200-2, Magstim 

LTD, Whitland, UK). Subjects were first familiarized to TMS procedures by explaining the 

procedures and anticipated sensations, and the coil was placed at the vertex and stimuli were 

applied at gradually increasing intensities, starting at 15 percent maximal stimulator output and 

increasing 5 percent, until a visible ankle twitch is observed. The coil was then moved around the 

apex of the head, in a 5 cm radius beginning 1 cm anterior and lateral (right) to the vertex, with a 

suprathreshold stimulus every 5 seconds in order to determine a “hotspot” indicated by a motor 

response in the TA. Once the hotspot was determined, 40-50 magnetic pulses were delivered in a 

randomized order, separated by 4-7 seconds, to generate a stimulus-response curve. The motor 

responses to these pulses were recorded and the resting motor threshold (RMT) was derived from 

plotting the peak to peak amplitudes of the MEP’s against the varying intensities (Devanne et al., 

1997; Needle et al., 2013). Lastly, participants contracted their TA muscles at 10% of their 

maximal isometric contraction as thirty pulses (10 each) at 90, 110, and 130% of the subject’s 

RMT were randomly provided. Upon completion of gait analysis procedures listed below, 

participants completed a second round of this facilitated testing. This was to help determine any 

long term changes. Stimulus intensities were set, triggered, and EMG responses were 

synchronized and recorded in custom LabVIEW software. 

 Custom LabVIEW software was used to extract variables of corticospinal excitability and 

cortical inhibition offline. Peak to peak MEP amplitudes were extracted and normalized by 
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dividing by MMax (from H-reflex testing). Stimulus-response curves were fitted to a modified 

Boltzmann equation using a Levenberg-Marquardt algorithm to extract the maximum MEP size 

(MEPMax), and to derive the RMT (Needle et al., 2013). For facilitated (TA contracted) trials, the 

peak-to-peak average of normalized MEP’s were extracted and averaged across each intensity to 

determine the MEP size at 90%, 110%, and 130% of subjects’ RMT (Bruce et al., 2020). 

Facilitated trials were also used to assess for CSP. T-tests were used to compare logarithmically-

transformed EMG activity normalized to pre-stimulus levels to a 4 ms window, to help 

determine when EMG levels had returned to resting values (Nilsson et al., 1997). A trained 

investigator confirmed these durations on a visible plot, extracting the time from the onset of the 

MEP, to the resumption of pre-stimulus activity, as the CSP (Kimberley et al., 2009).  

 

Gait Analysis 

To capture kinematic data, an eight camera Vicon-Vantage System (Oxford, UK) was 

used as subjects ambulated on a split-belt instrumented treadmill (Bertec, Columbus, OH). 

Infrared cameras sampling at a frequency of 100 Hz contributed to detecting a custom reflective 

marker template placed on subjects during all testing sessions, using the recommendations of 

Visual 3D (C-Motion Inc., Germantown, MD) documentation. For system calibration purposes, 

individual markers were placed on both anterior superior iliac spines, greater trochanters, medial 

and lateral femoral condyles, medial and lateral malleoli, the second and fifth metatarsal joints, 

and the calcanei. Reflective marker clusters were placed on the sacrum, lateral thighs, and on the 

lateral shanks. During dynamic trials markers for the greater trochanters, medial and lateral 

femoral condyles, medial and lateral malleoli were removed. All markers were secured by 

Velcro wraps and tape. 

https://www.google.com/search?rlz=1C5CHFA_enUS769US769&q=Hauppauge,+New+York&stick=H4sIAAAAAAAAAOPgE-LSz9U3MC4wTk9OUuIAsSstsiu0tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcWLWIU9EksLChJL01N1FPxSyxUi84uyAcWwnhpaAAAA&sa=X&ved=2ahUKEwjZurKr8fPhAhUEWN8KHTQbDOIQmxMoATAdegQICRAE
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 With a preselected speed of 1 m/s on each belt, participants walked on the treadmill with 

each foot on one belt, for two minutes as the cameras collected data in Nexus software (Vicon, 

Oxford, UK)  (Figure 2). Data were reconstructed, automatically labeled, filtered, and cut, only 

using the middle 60 seconds of the treadmill walking. For Post-BI trials, participants were 

allowed to freely walk around the laboratory for 15 minutes without the BI, and then tested in the 

same manner as previously described on the treadmill to create an additional time point (Post-

BI15). This was to aid in determining any long-term changes to gait kinematics.  

Gait cycles were partitioned based on heel-strike to heel-strike of the left leg using Visual 

3D (C-Motion Inc., Germantown, MD). ROM in the sagittal (X), frontal (Y), and transverse (Z) 

planes (Table 3) were then time normalized for the stance and swing phases separately, so that 

each phase was some percentage of 100 frames. To assess continuous changes in lower extremity 

joint angles, statistical parametric mapping (SPM) was used. Peak joint angles were then 

averaged for each intervention using a custom LabVIEW program (National Instruments, Austin, 

TX).  

 

Figure 2  

Marker placement and split-belt treadmill 
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Table 3 

Reference for positive and negative angles in V3D 
 

 Positive Negative 

Ankle X Dorsiflexion Plantarflexion 

 Y Eversion Inversion 

 Z Ext. Rotation Int. Rotation 

Knee X Extension Flexion 

 Y Adduction Abduction 

 Z Int. Rotation Ext. Rotation 

Hip X Flexion Extension 

 Y Abduction Adduction 

 Z Ext. Rotation Int. Rotation 

 

Intervention  

Because of the burden on activities of daily living caused by the BI treatment, we allowed each 

participant to choose which treatment they wanted to undergo first, with the decision made upon 

recruitment. All subjects were sized for the appropriate BI (Aircast FP Walker) (Figure 3), 

according to their left shoe size, after the pretests and prior to instrumentation. Prior to 

instrumentation of the BI, subjects were also provided a CS (Rolyan Stockinette) (Figure 4) to 

wear under the BI, to control for cutaneous afferent information and allow the CS to serve as a 

true control condition. The second condition only involved wearing the CS. Participants were 

instructed to go about their normal daily routines. They were instructed with proper application 

and removal procedures. It was asked that the BI only be removed during sleeping and bathing 

times. During the initial pretest, subjects were asked to wear a Fitbit Zip (Fitbit Inc, San 
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Francisco, CA) on their waistbands to determine changes in activity levels. The number of steps 

at the end of every day a treatment was implemented was recorded by the subjects and obtained 

via the Research Electronic Database Capture (REDCap). A follow-up questionnaire was sent to 

all participants a week after each treatment to insure the maintenance of their well-being, 

including questions of lingering pain and discomfort following BI use. 

Figure 3  

Boot immobilizer 

 

 

 

 

 

 

 

 

 

 

 

Figure 4  

Compression sock  

 

Statistical Analysis 

A factorial ANOVA with two within-subjects factors (Muscle, 3 levels; Time, 4 levels) 

was used to analyze HMax:MMax ratio, RMT, and MEPMax. A repeated measures factorial 

ANOVA (Intensity, 3 levels; Time, 4 levels) was used to compare MEP size and CSP durations. 

SPM was used to conduct a repeated-measures ANOVA with one within-subjects factor 

(Time, 5 levels) to compare ensemble ankle, knee, and hip angles, in the frontal, transverse, and 
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sagittal planes during the stance and swing phases, separately. MATLAB code (MathWorks, 

Inc., Natick, USA) was used to conduct SPM analyses, using functions from the spm1d open-

source package (Pataky, Vanrenterghem, Robinson, 2016). In the case of significant main-

effects, post-hoc tests were conducted using SPM paired t-test modules to compare Pre-BI to 

Post-B, Pre-BI to Post-BI15, and Pre-CS to Post-CS. For peak joint angles, a repeated measures 

ANOVA within one within-subjects factor (Time, 5 levels) was used to compare positive and 

negative joint angles at each joint for the stance and swing phases. 

In the case of significant interaction effects for both neural and kinematic measures, 

Fisher’s least significant difference pairwise comparisons was used post hoc to determine 

differences, with the difference within conditions (Pre-BI to Post-BI; Pre-CS to Post-CS) being 

the tests on interest. Effect sizes were determined through partial eta-squared, where 0.01 was a 

small effect, 0.06 was a medium sized effect, and 0.14 was a large effect size. An a priori level of 

significance was set at 0.05 (Cohen, Miles, Shevlin, 2001) 
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Chapter 4: Results 

 

Twelve participants were recruited for this study (6M/6F, age: 20.8±1.4 

yrs, height: 1.7±0.1 m, mass: 75.2±9.9 kg). Nine participants chose the BI condition first. Eleven 

subjects completed all testing procedures (one subject did not tolerate TMS procedures). The 

average time between the posttest of the first condition and the pretest of the second condition 

was 12.4±6.9 days.  

Reflexive Excitability 

There were no time-by-muscle main effects F6,66=1.946; p=0.086, η2=0.15) for H:M ratio. 

There were, however, significant time (F3,33=4.026;  p=0.015, η2=0.268) and muscle 

(F2,22=1.946; p<0.001, η2=0.793) main effects observed. Pairwise comparisons revealed a 

decrease in HMax:MMax ratio, Pre-BI to Post-BI (p=0.003, Figure 5), with no differences between 

other time points. Pairwise comparisons also revealed a greater H:M ratio in the SOL than the 

TA (p<0.001) and the PL (p<0.001, Table 4). Individual differences were plotted Pre-BI to Post-

BI, with three subjects’ data being unusable (Figure 6).  

Table 4 

HMax:MMax Ratio 
 

Pre-BI Post-BI Pre-CS Pre-CS 
 

TA 0.16±0.07 0.14±0.07a 0.17±0.08 0.16±0.06 

PL 0.25±0.16 0.14±0.08a 0.15±0.07 0.15±0.05 

SOLbc 0.50±0.21 0.41±0.08a 0.48±0.20 0.48±0.19 

Note: Pairwise comparisons of decrease in H:M ratio Pre-BI to Post-BI. a Significantly different from Pre-BI. b 

Significantly different from TA.c Significantly different from PL 
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Figure 5 

 
Note: Pairwise comparisons of decreases in TA, PL, and SOL H:M ratio Pre-BI to Post-BI 

*Significantly different from Pre-BI 

 

Figure 6 
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Corticospinal Excitability 

For RMT, there was a significant muscle-by-time interaction effect (F6,36=4.351; 

p=0.002, η2=0.42) (Table 5). Pairwise comparisons revealed that RMT significantly decreased 

Pre-BI to Post-BI in the TA (p=0.046 Figure 7) and in the SOL (p=0.005). Additionally, the TA 

(p=0.035) and PL (p=0.033) had significantly greater RMT than the SOL, Post-BI. Individual 

differences were plotted Pre-BI to Post-BI, with three subjects’ data being unusable (Figure 8). 

Table 5 

RMT (%2T) 
 

Pre-BI Post-BI Pre-CS Post-CS 

 
TA 31.61±9.02 27.27±8.33a 27.87±10.23 27.14±9.31 

PLb 30.59±12.10 27.80±6.98 29.37±9.54 29.34±9.04 

SOLb 40.93±23.26 15.11±14.54a 25.66±19.98 28.66±16.67 

 

Note: Post hoc analysis showing RMT decreased Pre-BI to Post-BI. a Significantly different from Pre-BI. 

bSignificantly different from TA 
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Figure 7 

 
Note: Pairwise comparisons of decreases in TA, PL, and SOL H:M ratio Pre-BI to Post-BI 

*Significantly different from Pre-BI 

 

Figure 8 
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For MEPMax, there was no significant muscle-by-time interaction effect (F6,36=0.702; 

p=0.65, η2=0.105), and no main effect of time (F5,18=0.57; p=0.642, η2=0.087). However there 

was a significant effect of muscle (F2,12=4.232; p=0.041, η2=0.414). Pairwise comparison 

revealed greater maximum MEP values in the TA than the PL, p=0.008 (Table 6). 

Table 6 

MEPMax 
 

Pre-BI Post-BI Pre-CS Post-CS 

 

TA 0.18±0.03 0.13±0.08 0.18±0.11 0.22±0.12 

PL 0.07±0.06 0.07±0.05 0.10±0.09 0.09±0.08 

SOL 0.84±1.44 0.74±0.97 0.97±2.11 0.04±0.04 

Note: No significant time-by-intensity effects. Values are ratio of MEPMax normalized to MMax. a Significantly 

different from PL 

 

For MEP size at 90, 110, and 130 percent of RMT, there were no significant time-by-

intensity interaction effects for the TA (F6,54=0.823; p=0.557, η2=0.084), PL (F6,54=0.740; 

p=0.620, η2=0.076), or SOL (F6,48=0.798; p=0.577, η2=0.091) . Similarly there were no 

significant effects of time observed for the TA (F3,27=1.658; p=0.200, η2=0.156), PL 

(F3,27=0.403; p=0.752, η2=0.043), and SOL (F3,24=2.031; p=0.136, η2=0.202). Significant main 

effects of intensity were observed for the TA (F2,18=33.666; p<0.001, η2=0.789), PL 

(F2,18=23.335; p<0.001, η2=0.721), and SOL (F2,16=11.568; p=0.001, η2=0.591). Pairwise 

comparison revealed that for all muscles MEP size was significantly greater at 130% than 110% 

RMT (TA: p=0.026, PL: p=0.018, SOL: p=0.017), greater at 110% than 90% RMT (TA: 

p<0.001, PL: p=0.001, SOL: p=0.012), and greater at 130% than 90% RMT (TA: p<0.001, PL: 

p=0.001, SOL: p=p=0.008) (Table 7). 
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Table 7 

MEP Size 
 

Pre-BI Post-BI Pre-CS Post-CS 

90 TA 0.13±0.07 0.09±0.05 0.14±0.11 0.15±0.07 

PL 0.06±0.04 0.04±0.04 0.05±0.04 0.05±0.03 

SOL 0.01±0.01 0.03±0.06 0.02±0.01 0.01±0.01 

110a TA 0.25±0.10 0.21±0.11 0.31±0.15 0.29±0.09 

PL 0.10±0.06 0.10±0.08 0.12±0.06 0.11±0.07 

SOL 0.02±0.02 0.05±0.09 0.03±0.02 0.03±0.02 

130ab TA 0.42±0.24 0.29±0.11 0.36±0.18 0.36±0.09 

PL 0.16±0.10 0.13±0.11 0.15±0.06 0.13±0.07 

SOL 0.04±0.03 0.03±0.02 0.4±0.03 0.03±0.02 

Note:  Pairwise comparison showed MEP size greater at 130%, than 110%, and 90% at all muscles. Values are ratio 

of MEP size normalized to MMax. a Significantly different from 90%. b Significantly different from 110% 

 

For CSP, there was no significant time-by-intensity interaction (F=0.631; df 6,42; 

p=0.704, η2=0.083), as well as no main effects of time (F=1.022; df 3,21; p=0.403, η2=0.127) or 

intensity (F=3.412; df 2,14; p=0.062, η2=0.328) (Table 8). 

Table 8 

CSP 
 

Pre-BI Post-BI Pre-CS Post-CS 

90 135.50±59.11 165.63±63.07 171.00±55.93 166.50±57.93 

110 158.75±67.09 187.38±83.70 164.63±54.57 190.50±72.19 

130 183.25±97.34 193.88±97.89 237.75±49.93 248.13±93.61 

Note: No significant time-by-intensity interaction. Values in ms. 
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Ankle Kinematics       

SPM analysis revealed no significant changes during stance or swing in ankle frontal, 

sagittal, or transverse angles (p>0.05). When comparing peak joint angles, there were no 

significant main effects of time in the stance or swing phase (Table 9).  
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Table 9 

Peak ankle joint angles 
 

Pre-BI Post-BI Post-BII5 Pre-CS Post-CS F p-

value 

S
ta

n
c
e
 

Plantarflexion 67.23±5.24 67.04± 5.59 66.47 ±4.00 65.14±3.90 65.12±4.39 1.662 0.178 

Dorsiflexion 90.24±4.87 88.89±5.25 88.61± 4.87 87.62± 4.13 87.72± 5.58 1.547 0.207 

Inversion -16.40±8.87 -14.03±5.26 -13.36±5.54 -13.27±8.47 -11.62±4.09 1.432 0.241 

Eversion -2.45±9.13 0.43±5.74 1.21±4.22 1.19±8.23 3.06±5.81 1.817 0.144 

Int.  Rotation 3.61±8.94 4.64±6.98 3.99±6.60 4.28±5.26 1.74±4.89 0.544 0.697 

Ext. Rotation 21.24±9.40 22.31±7.69 21.34±8.36 23.05±6.70 18.97±5.71 0.817 0.522 

S
w

in
g

 

Plantarflexion 66.71±6.57 66.42±6.57 66.64±5.17 65.54±4.28 66.34±5.45 0.315 0.866 

Dorsiflexion 83.61± 5.13 83.15± 4.50 82.35± 3.70 83.31± 3.91 82.73± 3.57 0.433 0.784 

Inversion -15.06±8.43 -13.44±5.07 -12.37±5.19 -13.09±8.59 -10.87±4.58 1.007 0.417 

Eversion -6.22±8.05 -4.24±5.91 -3.14±5.02 -3.01±7.24 -2.00±5.95 1.168 0.341 

Int. Rotation 5.63±8.83 6.38±7.03 5.94±6.48 8.44±6.74 4.40± 3.83 0.731 0.577 

Ext. Rotation 12.78± 8.57 14.76±8.39 12.74±7.75 15.46±7.31 10.41±4.46 1.083 0.380 

Note: Values in degrees. 

 

Knee Kinematics       

In the stance phase, SPM analysis revealed significant main effects of time for knee 

angles in the frontal (p=0.001) and transverse planes (p=0.049). Post hoc analyses, though, 
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revealed no significant differences between testing conditions (Figure 9). During the swing 

phase, there were significant differences in knee sagittal angles (p=0.025) and knee frontal 

angles (p<0.001). Post hoc analyses similarly revealed no significant differences between 

conditions (Figure 10).  
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Figure 9  

Knee frontal and transverse angles during stance 
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Figure 10  

Knee sagittal and frontal angles during swing 
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In comparing peak knee angles in the stance phase, there was a significant main effect of 

time for negative knee frontal angles (F4,40=5.720; p=0.001, η2=0.364), with pairwise 

comparisons revealing decreased knee abduction Pre-BI to Post-BI (p=0.011), and Pre-BI to 

Post-BI15 (p=0.048) (Table 10). There were no other differences observed for knee sagittal or 

transverse angles. There were significant overall effects during stance for negative knee frontal 

angles and knee transverse angles, however, post-hoc testing revealed no significant differences 

before and after the BI or CS interventions. 

In the swing phase, a significant main effect of time was observed for positive 

(F4,36=6.051; p=0.001, η2=0.402) and negative (F4,36=5.382; p=0.002, η2=0.374) peak knee 

frontal angles. Pairwise comparisons revealed decreased knee abduction Pre-BI to Post-BI 

(p=0.006), and Pre-BI to Post-BI15 (p=0.012). There was also an increase in knee adduction Pre-

BI to Post-BI (p=0.034), and Pre-BI to Post-BI15 (p=0.031). A main effect of time was shown 

for peak knee transverse angle during the swing phase, with pairwise comparison revealing an 

increase in external rotation Pre-BI to Post-BI (p=0.044).  

There were significant overall effects for negative knee sagittal angles (F4,36=4.270; 

p=0.006, η2=0.322) during swing, however, post-hoc testing revealed no significant differences 

before and after the BI or CS interventions. 
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Table 10 

Peak knee joint angles 
 

Pre-BI Post-BI Post-BI15 Pre-CS Post-CS F p-

value 

S
ta

n
c
e
 

Flexion -40.61±5.12 -40.75±9.16 -43.83±6.46 -38.62±6.15 -40.53±6.59 1.132 0.355 

Extension -4.30±5.22 -5.68±7.10 -4.11±8.09 -1.50±4.84 -2.78±3.90 2.163 0.091 

Abduction -7.09±1.89 -3.35±3.41a -3.69±4.66a -10.17± 7.47 -5.68± 3.02 5.720 0.001 

Adduction -0.85±2.48 0.63± 3.44 1.29± 3.75 -2.99± 5.55 0.10±  3.06 2.938 0.032 

Ext. Rotation -14.59±7.25 -19.44±7.67 -20.08±7.81 -12.77±12.90 -10.93±5.90 3.478 0.016 

Int. Rotation -3.85± 8.80 -9.49± 7.29 -8.44± 7.54 -1.09±13.84 0.29± 5.80 3.318 0.019 

S
w

in
g

 

Flexion -57.15±4.73 -60.34±4.80 -59.41± 5.58 -57.06±2.74 -54.67±4.21 4.270 0.006 

Extension -0.85±4.48 -2.26±5.87 -0.77±6.64 0.55±5.20 0.57±3.30 1.414 0.249 

Abduction -10.60±2.06 -4.70± 4.33a -4.55±5.13a -11.67± 7.50 -9.17± 3.87 5.382 0.002 

Adduction -1.25± 2.98 3.50± 4.27a 3.71± 4.45a -2.57± 5.91 0.04± 2.81 6.051 0.001 

Ext. Rotation -19.58±7.55 -25.58±7.12a -24.82±7.54 -19.21±11.62 -15.40±6.05 3.786 0.011 

Int. Rotation -6.97±8.25 -11.49±8.28 -10.62±8.43 -4.43±14.34 -3.57±6.14 2.253 0.083 

Note: Knee kinematics significantly different Pre-BI to Post BI. Values in degrees. a Significantly different from 

Pre-BI. 
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Hip Kinematics  

SPM analysis revealed a significant difference in hip transverse joint angles during the 

stance phase. Post hoc analysis revealed more negative hip transverse angles between Pre-BI and 

Post-BI (p<0.003) and Pre-BI to Pre-BI15 (p<0.001) throughout the entire range of motion 

(Figure 9). During the swing phase, there was a significant difference in hip joint angles in the 

transverse plane. Post hoc analysis revealed more negative hip transverse angles between Pre-BI 

and Post-BI and Pre-BI to Post-BI15 (p<0.001) (Figure 11). 
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Figure 11 

Hip transverse angles during stance and swing 
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During the stance phase, a significant main effect of time was noted for positive 

(F4,36=5.252 p=0.002, η2=0.327) and negative (F4,36=5.120; p=0.002, η2=0.309) peak hip 

transverse angles (Table 11). Pairwise comparisons showed a decrease in external rotation during 

stance, Pre-BI to Post-BI (p=0.009), and Pre-BI to Post-BI15 (p=0.003). Concurrently, an 

increase in peak internal rotation was also observed, Pre-BI to Post-BI (p=0.005), and Pre-BI to 

Post-BI15 (p=0.010). There were significant overall effects during stance for positive hip frontal 

angles however, there was no significant main effect Pre-BI to Post BI, Pre-BI to Post BI15, or 

Pre-CS to Post-CS. 

During swing, peak hip transverse angles also demonstrated a main effect of time Pre-BI 

to Post-BI (p=0.013), and Pre-BI to Post-BI15 (p=0.010).  An increase in peak internal rotation 

was also observed, Pre-BI to Post-BI (p=0.012), and Pre-BI to Post-BI15 (p=0.016). 
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Table 11 

Peak hip angles  
Pre-BI Post-BI Post-BI15 Pre-CS Post-CS F p-

value 

S
ta

n
c
e
 

Extension -5.91±6.92 -4.61±6.84 -4.89±6.96 -6.21±6.58 -8.73±5.88 1.488 0.224 

Flexion 28.58±6.57 28.45±7.91 29.43±4.47 28.39±6.81 25.01±5.25 1.309 0.283 

Abduction -3.97±3.69 -3.11±6.26 -3.12±6.27 -6.26±6.93 -1.65±3.61 2.516 0.056 

Adduction 5.66± 4.62 5.70± 5.16 5.83± 4.95 3.85± 5.43 7.79±  3.85 2.627 0.049 

Int. Rotation 3.33±  7.19 -5.72± 8.79a -6.57±  8.34a -0.95± 8.10 0.96± 5.72 5.120 0.002 

Ext. Rotation 12.41± 6.25 3.35± 9.70a 3.71± 10.41a 8.96± 8.76 11.67± 4.74 5.252 0.002 

S
w

in
g

 

Extension 1.29±6.19 3.60±6.54 3.85±7.38 1.67±6.17 0.59±4.11 1.287 0.293 

Flexion 30.74±6.97 33.16±6.33 32.47±6.69 31.62±7.56 28.11±3.83 1.796 0.151 

Abduction -0.73±4.47 -0.03±6.74 -0.23±6.85 -0.73±4.47 1.32±3.95 1.474 0.230 

Adduction 6.56±3.72 7.30±5.19 7.15±4.94 4.78±5.07 8.95±3.46 2.498 0.060 

Int.  Rotation 4.63±  7.00 -4.14±8.58a -4.48± 8.62a 1.46± 9.20 3.83± 6.57 4.022 0.008 

Ext. Rotation 13.08± 5.63 4.22± 10.02a 4.77± 10.17a 8.65± 8.24 13.03±  6.05 4.379 0.005 

 
Note: Hip kinematics significantly different Pre-BI to Post BI. Values in degrees. a Significantly different from Pre-

BI. 

 

Physical Activity 

Comparing step count, one subject did not report their data. No significant differences 

were observed for total step count between conditions (t9=1.031, p=0.329). There were also no 
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significant differences between average step count between conditions (t9=1.327, p=0.217) 

(Table 12). 

Table 12 

Step counts with BI and CS 
 

Sum Average 

BI 11004±7105 3950±2234 

CS 14008±7366 5339±2949 
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Chapter 5: Discussion 

 

The purpose of this study was to determine the effects of 72 hours of ankle 

immobilization on reflexive and corticospinal excitability to lower leg muscles, as well as 

determine the effects of on unilateral hip, knee, and ankle joint kinematics. We hypothesized that 

reflexive and corticospinal excitability would increase, as evidenced by an increase in HMax:MMax 

ratio, a decrease in RMT and CSP, and an increase in MEP size. Our findings partially supported 

these hypotheses, as RMT deceased; however, HMax:MMax ratios decreased for all muscles Pre-BI 

to Post-BI, while MEP size and CSP did not change Pre-BI to Post-BI. Lastly, we posited that 

the BI would alter ROM throughout the gait cycle. Our results partially support this, in that 

significant differences in knee adduction angles and increased hip internal rotation were seen, 

with no changes at the ankle. 

 

Reflexive Excitability 

Wearing a BI for 72 hours compared to a CS resulted in decreased in HMax:MMax ratios, 

not specific to any lower leg muscle. We hypothesize that 72 hours of decreasing ankle joint load 

and minimizing changes in joint position reduced mechanical stimulation of afferents, which in 

turn reduced sensory drive to spinal neural pools (interneurons, motor neurons, synapses on other 

sensory axons, etc.), and eventually caused functional and perhaps structural changes to the pool 

that resulted in reduced ability to respond to sensory inputs. More simply, the 72 hours of 

decreased muscle spindle discharge, due to BI use, led to decreased motor neuron pool 

excitability resulting in a decreased HMax:MMax ratio. Further, it is possible that other subcortical 

descending pathways (e.g. reticulospinal pathways) could also modify reflex sensitivity, 

although this may be less likely as changes were across all muscles and not isolated to the flexors 
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or extensors (Chakravarty & Mukherjee, 2010). Although some variability was observed across 

subjects, differences over time persisted across all muscles. While unclear the duration of time 

that these changes persisted, some individuals had neural excitability measured 15-minutes after 

free ambulation. A paired t-test on these data revealed that reflexive excitability did not 

significantly change between post-testing and post-walking for the TA (p=0.058), PL (p=0.387), 

or SOL (p=0.428). These indicate that depressed excitability is maintained for at least 15 minutes 

following immobilization.  

Our results conflict with previous research done using different immobilization 

paradigms. The majority of studies use casting models to observe changes in reflexive 

excitability primarily and have done so in the upper extremities (Clark et al., 2008; Lundbye-

Jensen & Nielson, 2008a). These upper extremity models typically reveal increases to reflexive 

excitability, however, multiple differences exist between upper and lower extremity models, 

notably the decreased cortical input to muscles in the lower extremities. Lower extremity models 

that have implemented casting have found both increases (Lundbye-Jensen & Nielson 2008b) 

and no changes (Leukel et al., 2015) in reflexive excitability after 2 weeks and 8 weeks, 

respectively, possibly indicating the time immobilized impacts responses to reflexive 

excitability. These previous investigations hypothesized increased excitability represented neural 

changes that occur because of near complete sensory deprivation leading to increased spindle 

sensitivity. However, as mentioned, these investigations utilize casting, whereas the use of a BI 

(such as in our study) is more commonly used, and likely still allows for some small amounts of 

joint loading compared to a full immobilization.  

Only one study has looked at reflexive excitability after wearing a BI and found no 

differences after a 30-minute intervention (Stirling et al., 2018).  This indicates that, similar to 



 50 

casting models, reflexive excitability changes could be time-dependent in a BI. These data 

collectively suggest that immobilization may lead to sub-acute decreases in reflexive excitability 

in ambulatory devices but would increase when completely unloaded. 

Ankle sprains and CAI are both associated with consistent decreases in reflexive 

excitability secondary to arthrogenic muscle inhibition (Kim et al., 2019). Pain and swelling 

from injury, and/or deafferentation contribute to decreased reflexive excitability (Needle et 

al., 2017a). Subsequently, the weakened reflexes seen in injured individuals is believed to pose 

a disadvantage, impairing the ability of stabilizing muscles to provide protection to the ankle 

joint. Our results suggest that immobilization may amplify such changes, due to the decrease 

in reflexive excitability; however, studies utilizing immobilization in injury models are 

needed. It remains unclear how decreased loading would interact with injury symptoms (e.g. 

pain, swelling) to modify neural excitability. 

 

Corticospinal Excitability 

Corticospinal excitability increased after 72 hours of BI use, as evidenced by increased 

RMT; however, no changes were observed for MEP size, MEPMax, or CSP. These findings 

suggest a decreased activation threshold of cortical neurons, without modifying motor neuron 

recruitment and/or intracortical GABA-ergic activity (Devanne et al., 1997).  This is in line with 

our a priori hypotheses, which stated that modified spindle sensitivity from unloading would 

increase muscle spindle sensitivity and thus increase cortical excitability to the immobilized 

muscles. In our case, we observed changes within the muscles that contribute to sagittal plane 

ankle motion (i.e. TA & SOL). These results are divergent from what was observed in reflexive 

excitability; however, it's possible that cortical changes occurred in such a way to counteract 
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depressed reflexive excitability to maintain appropriate muscle activation. Our findings are 

similar to previous studies that found there to be a significant correlation between motor 

threshold and muscle spindle afferent activity (Needle et al., 2018). Intersubject neural 

variability persisted with changes Pre-BI to Post-BI, however, the reported significant 

differences reflect all participants. Neural excitability data was not available after 15 minutes of 

free ambulation, to compare long term effects. 

Previous lower limb immobilization studies have produced varying results. Casting 

models have shown increases in corticospinal excitability as measured by MEP size (Leukel et 

al., 2015; Roberts et al., 2007) with no changes previously observed for RMT (Roberts et al., 

2007). These studies immobilized participants from 10 days to 8 weeks. The longer wear coupled 

with limb unloading may have caused changes in how neural resources were called upon, 

resulting in increased MEP size. As previously mentioned, the only study that measured 

corticospinal excitability after wearing a BI did so for only 30 minutes, potentially not leaving 

enough time for changes to occur, also citing no CSP changes (Stirling et al., 2018).  

Ankle sprains and CAI are associated with decreases in cortical excitability from 

similar models of arthrogenic inhibition (Needle et al., 2017a). The BI appears to increase 

RMT which is often decreased among those with CAI, posing a potential benefit. However, 

questions remain as to if lowering cortical membrane thresholds is an advantage, due to the 

array of signal processing within the nervous system (Faisal et al., 2008). Nevertheless, the 

consequences of a decreased RMT remain to be seen, as future research should explore if this 

effect persists in an injured population. Additionally, measurements were only taken in the 

immobilized ankle (left leg), leaving room for continued understanding surround proximal 

and contralateral neural excitability.  
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Lower Extremity Kinematics 

After 72 hours of BI, we observed no changes in ankle ROM. This is surprising as we 

hypothesized immobilization would contribute to a stiffer ankle joint, resulting in decreased 

motion. Additionally, changes in excitability have been shown to be associated with changes in 

joint stiffness (Needle et al., 2013). While no changes in ROM were detected in this 

investigation, we cannot conclude that stiffness did not change as joint moments were not 

calculated in this investigation. While contrary to our hypothesis, the maintenance of ankle ROM 

may be a worthwhile effect when considering injury models. Ankle sprains and CAI are 

associated with decreases in ankle dorsiflexion and increases in frontal and transverse motion. 

Our lack of differences may be beneficial in preventing these deficits, but further investigation 

among injured populations would be needed. 

Proximal changes at the hip and knee were observed using both SPM analyses that 

look at continuous gait cycle data as well as discrete variables. Notably, decreased hip internal 

rotation during stance and swing phases were observed using SPM, while multiple main 

effects were detected at the knee joint that did not reveal any changes post hoc. It is possible 

that the lack of changes observed post hoc would not be the case with a larger sample size. 

We additionally explored peak joint angles during stance and swing for the knee and hip 

joints. During stance peak knee abduction and peak hip external rotation decreased, while hip 

internal rotation increased. During swing peak knee internal rotation, knee adduction, and hip 

internal rotation increased. Peak knee abduction also decreased during swing. These changes 

imply gait cycle disruptions in which there is more internal hip rotation and knee adduction. 

Many of the changes observed can be explained by the induced leg length discrepancy 

(LLD) from the BI. During the stance phase, the induced LLD would result in an increased 
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demand on knee adduction, and hip and knee internal rotation throughout the loading 

response, as ankle pronation would be unavailable. This effect seemed to carry on following 

BI removal (Post-BI), as well as 15 minutes after removal (Post-BI15). During the swing 

phase, the increased LLD would create an increased demand on proximal joints to clear the 

limb, which could be achieved by increasing knee and hip flexion. The increased hip internal 

rotation that was found during swing would not aid this foot clearing, but could represent the 

inability to return to a resting position following the loading response. These results indicated 

that subjects were more likely to maximize frontotransverse hip motion during the swing 

phase to clear the foot, even after BI removal. 

Only three studies have examined kinematics while wearing a BI similar to the one used 

in this study (Gulgin et al., 2018; Pollo et al., 1999; Zhang et al., 2006). Pollo et al. (1999) found 

that wearing a BI had no significant effects on ROM during gait, while Zhang et al. (2006) found 

that a BI can induce changes at the ankle, knee, and hip. Unlike our study they found that ankle 

eversion and hip adduction were reduced and knee flexion increased. More contemporary 

research by Gulgin et al. (2018) reported increased hip internal rotation, but unlike this study 

they also found changes in hip adduction, hip flexion, knee abduction, knee flexion, and knee 

internal rotation. This study did observe such trends, but it is possible that those trends could 

have been more present with more participants, like that of the 40 used in the aforementioned 

study. The 12 participants used in this study were similar to the 10 to 12 participants used in 

other immobilization studies (Clark et al., 2008; Lundbye-Jensen & Nielsen, 2008a; Lundbye-

Jensen & Nielsen, 2008b). Another major reason for discrepancies in findings could be that all of 

the previous studies measured kinematics with the BI still on, thus creating an acute LLD. No 

studies have observed kinematic changes upon removal of a BI, and it is possible that 
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compensatory mechanisms change when there is no LLD. What does appear similar to our study, 

with at least the Zhang et al. (2006) and Gulgin et al. (2018) studies, is that there were proximal 

kinematic changes, as opposed to their being changes at the ankle, however, that in part could be 

due to obtaining kinematic data with a BI on.  

Previous literature has shown that walking speed can affect gait kinematics (Fukuchi et 

al., 2019), which is why a preselected speed was used for this study, as opposed to allowing 

participants to self-select their speeds. Furthermore, 1 m/s is close to average walking speed for 

this demographic (Bohannon, 1997), and analysis was simplified, as we did not have to account 

for any differences due to gait speed. How a BI affects other variables such as joint stiffness, 

joint moments (and other kinetic measures), the contralateral limb, and in an injured population 

after using a BI still remains to be seen. Further studies taking these variables into account would 

help to create a more complete understanding of gait after BI usage.   

 

Physical Activity 

One potential covariate for changes in our dependent variables could be the amount of 

activity performed under the BI and CS conditions. Subjects were encouraged to continue 

activities of daily living with the BI; however, the restrictions of the boot could be likely to 

limit physical activity. To account for this we tracked this with a FitBit Zip (Fitbit Inc, San 

Francisco, CA). Although decreased physical activity was observed, there were no statistically 

significant differences in the amount of physical activity between conditions, indicating 

inactivity was not likely to affect our dependent variables. 
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Chapter 6: Conclusion 

Seventy-two hours of BI use led to increases in cortical excitability, but decreased 

reflexive excitability. The former result is potentially desirable when considering injury models, 

but the latter is potentially problematic. Therefore, treatments to improve reflexive 

excitability after immobilization (e.g. focal joint cooling, joint mobilization) could be warranted. 

Further, the BI did not modify ankle kinematics, which is potentially beneficial, but it did 

modify proximal joint mechanics. The long-term effects of these proximal changes, and the 

way it may contribute to injury recovery, remain unclear. 

No previous studies have measured neural excitability concurrently with reflexive 

excitability before and after the use of a boot immobilizer. Understanding the changes in 

healthy ankle are a prerequisite to investigating these changes among those with ankle injury, 

thus future studies are necessary to help determine the effects of BI’s on injured populations. 

This study, unlike others, only observed unilateral changes, and understanding bilateral gait 

changes, as well as kinematic changes would create a full picture of the effects of BI’s on lower 

extremity biomechanics. Lastly, neural measurements were focused at the ankle joint. Because of 

the proximal changes seen, it would be worthwhile to measure neural excitability at the knee and 

hip.  
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